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Abstract 

Background Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria 
transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing 
reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO 
recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), 
and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites 
in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six 
neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania.

Methods Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), 
Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted 
from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, 
PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent 
of their polymorphisms and genetic diversity at the four sites.

Results Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% 
of the markers), and > 50.0% of the samples (range = 47.6–59.1%) were polyclonal, with a mean multiplicity 
of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited 
variability among the four sites based on mean allelic richness  (RS = 7.48, range = 7.27–8.03, for an adjusted 
minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80–0.85). Cluster 
analysis of haplotypes using STRU CTU RE, principal component analysis, and pairwise genetic differentiation (FST) did 
not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α 
was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic.
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Background
Malaria case management is one of the main 
interventions for malaria control, and together with 
vector control tools, it has significantly contributed 
to the reduction in morbidity and mortality that was 
reported between 2000 and 2015 [1]. However, this 
strategy has been compromised by antimalaria drug 
resistance, which led to the withdrawal of chloroquine 
and sulfadoxine–pyrimethamine (SP) and the 
replacement of these drugs with artemisinin-based 
combination therapy (ACT) [2]. In 2006, Tanzania 
introduced ACT with artemether–lumefantrine (AL) 
for the treatment of uncomplicated malaria, and the 
drug was officially rolled out in January 2007 [3]. AL, 
which is a fixed-dose combination of artemether and 
lumefantrine, has been effectively used for the past 
16 years for the treatment of uncomplicated falciparum 
malaria [4], and studies undertaken in Tanzania have 
shown that it has maintained high and optimal efficacy 
and safety with high cure rates and minimal safety 
concerns [5–9]. Previous reports have shown that 
artemisinin partial resistance (ART-R) emerged in the 
Mekong Sub-region of South-east Asia following the 
deployment of ACT and was associated with delayed 
parasite clearance [10, 11], extended survival at the ring 
stage [12, 13] and mutations in the kelch13 (k13) gene 
[14–16].

Until 2018, mutations associated with ART-R had not 
been reported in Africa [4], and ACT retained high cure 
rates for the treatment of uncomplicated Plasmodium 
falciparum malaria [4]. However, recent studies showed 
confirmed ART-R in Rwanda with mutations at codon 
R561H (> 5%) of the k13 gene and day 3 positivity rates 
(> 10%), but AL still had sufficient cure rates (> 90%) 
[17, 18]. Similarly, ART-R has been reported in Uganda 
with mutations in the k13 gene at codons A675V and 
C469Y [19], in Tanzania with R561H mutations [20] 
and Eritrea with mutations at codon R622I [21]. For 
lumefantrine, studies conducted in Tanzania [9] and 
elsewhere have reported an increase in polymorphisms 
in the multidrug resistance 1 gene (mdr1), which is 
associated with reduced susceptibility to lumefantrine 
[22]. The impacts of the polymorphism (N86/184F/
D1246, NFD) in the mdr1 gene on AL performance 
are not clear; thus, sustained surveillance is needed to 
monitor the performance of this important ACT and 

allow early detection of any emergence of resistance 
before its efficacy is compromised.

In Tanzania, the National Malaria Control Programme 
(NMCP) and its partners have been collaboratively 
implementing therapeutic efficacy studies (TES) since 
1997 [23, 24]. These TES are based on the World Health 
Organization (WHO) standard protocol [25] and aim 
at monitoring the efficacy and safety of anti-malarials 
used for the treatment of uncomplicated malaria in 
children aged 6 months to 10 years. For Tanzania, studies 
have focused on the first-line anti-malarial (AL) and 
alternative artemisinin-based combinations. The current 
alternative ACT covered in TES include artesunate–
amodiaquine (ASAQ), which is the first-line drug used 
in Zanzibar [26], and dihydroartemisinin–piperaquine, 
which was included in the National Guidelines for 
Diagnosis and Treatment of Malaria from 2014 [27].

According to the WHO protocol [25], TES has two 
components: field data and sample collection and 
laboratory analyses. The laboratory analyses aim at 
distinguishing recrudescent from new infections in 
patients with recurrent infections and generating data on 
molecular markers of the genes associated with resistance 
or reduced sensitivity/susceptibility of the parasites to the 
drugs. To distinguish recrudescent from new infections, 
the old WHO protocol, which was developed in 2007, 
recommends genotyping three polymorphic genes 
including merozoite surface proteins 1 and 2 (msp1 and 
msp2) and glutamate-rich protein (glurp) [28]. Recently, 
the WHO recommended a new protocol in which both 
msp1 and msp2 are genotyped together with one or two 
highly polymorphic microsatellite markers which replace 
the glurp gene because it is not polymorphic enough and 
has led to underestimation of drug efficacy [29].

Several microsatellite markers have been utilized 
in studies of malaria parasites, but they differ in their 
level of polymorphism and informativeness, and 
their polymorphisms vary among different parasite 
populations [30]. Of the different microsatellites, the 
WHO recommends using poly-α and any of the other 
two markers, TA1 and PfK2. However, these markers 
have not been optimized in different countries, including 
Tanzania, to determine whether they are indeed 
sufficiently polymorphic and sensitive and can reliably 
be used for genotyping within the TES. This study was 
therefore undertaken to assess the polymorphisms and 

Conclusion Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population 
structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any 
of the other three markers could be adopted for use in TES in Tanzania.
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genetic diversity of six microsatellite markers (Poly-α, 
PfPK2, TA1, C3M69, C2M34 and M2490) for potential 
use in TES in Tanzania. These findings provide important 
information on these markers and parasite populations in 
the country and will facilitate future genomic studies and 
their application in TES and malaria surveillance.

Methods
Study sites
The samples used for this study were obtained from 
clinical malaria patients sampled in a TES that was 
conducted during and after the long rainy season between 
April and September 2016 [9]. It was undertaken in four 
geographically and epidemiologically distinct areas 
of Tanzania (Kibaha–Pwani, Mkuzi–Tanga, Mlimba–
Morogoro and Ujiji–Kigoma), and these sites have been 
NMCP sentinel sites for monitoring anti-malarial efficacy 
since 1997 (Fig. 1) [23, 24]. The study sites were selected 
to represent distinct geographic areas of Tanzania. In 
Kibaha district of the Coastal region (Pwani), the study 
was conducted at Yombo Dispensary, which is located 
in an area that has transitioned from high to low malaria 
transmission (with a prevalence by rapid diagnostic tests 
for malaria (RDTs) in under-fives of < 10% in 2017) [31–
33]. In Tanga region, the study site was Mkuzi Health 
Centre, which is located in Muheza district. Areas 
around Mkuzi have reported a progressive decline in 

malaria prevalence (in individuals aged < 20  years) from 
over 80% in the 1990s to < 10 in 2017 [34, 35]. Ujiji Health 
Centre is located in Kigoma urban district of Kigoma 
region. Parasite prevalence among under-fives (by RDTs) 
in Kigoma increased from 19.6% in 2007 to 38.1% in 
2016, followed by a decrease to 24.4% in 2017; however, 
this was the highest prevalence in the country [31–33]. 
The fourth site of Mlimba Health Centre (parasite 
prevalence among under-fives in 2017 was < 10%) is 
located in Kilombero district of Morogoro region and has 
experienced a significant decline in malaria burden in the 
last two decades [36]. Additional details of the study sites 
were given elsewhere [9, 37].

Study design and target population
Samples used for this analysis were collected during a 
single-arm prospective in  vivo TES that assessed the 
therapeutic efficacy and safety of AL for the treatment 
of uncomplicated Plasmodium falciparum malaria and 
markers of artemisinin and lumefantrine resistance [9]. 
The study recruited 344 out of the 963 febrile children 
aged 6 months to 10 years who were screened according 
to the WHO protocol [25].

Sample collection
Enrolled children were treated with AL and followed up 
for 28 days with clinical and parasitological assessments 

Fig. 1 Map of Tanzania showing the four study sites of Kibaha, Mkuzi, Mlimba, and Ujiji. (Parasite prevalence data were obtained from the School 
Malaria Parasitological Survey of 2015 [38]
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in the first 3  days post-treatment (days 1, 2 and 3) and 
once weekly from day 7 to 28 [9]. Thick and thin films 
were taken for the detection of malaria parasites during 
each visit. Dried blood spots (DBS) on filter papers were 
also collected at enrolment and from day 7 onward for 
molecular analyses of malaria parasites.

Sample processing and genotyping
Parasite genomic DNA was extracted from DBS using 
QIAamp DNA mini-kits (Qiagen GmbH, Hilden, 
Germany) according to the manufacturer’s instructions. 
A single piece of each DBS sample was cut using a scissor, 
with sterilization between samples using ethanol to 
prevent contamination. The cut portion of DBS was used 
for DNA extraction and it contained an equivalent of 
three punches of 6  mm, with about 20–30  µL of blood. 
The extracted DNA was then eluted into 150 µL of elution 
buffer and used for different PCR analyses, without 
quantifying the amount of DNA. The results of different 
analyses by gel and capillary electrophoresis showed that 
the samples had DNA of sufficient quantity and quality 
as reported previously [9]. Genotyping of six neutral 
microsatellite markers was performed at the Centers 
for Disease Control and Prevention’s (CDC) Malaria 
Laboratory in Atlanta, USA. A total of 184 samples 
collected on day 0 and on the day of recurrent infections 
during TES were genotyped using 6 microsatellites and 
only day 0 samples (n = 94) were included in downstream 
analysis. These samples were analysed to distinguish 
recrudescent from new infections as previously 
reported [9] and to determine genetic diversity in the 
study populations. The microsatellite markers (TA1 on 
chromosome 6, Poly-α on chromosome 4, PfPK2 on 
chromosome 12, M2490 on chromosome 10, C2M34-
313 on chromosome 2 and C3M69-383 on chromosome 
3) were genotyped by nested PCR for all except C2M34-
313 and C3M69-383 (which were analysed with a single-
step PCR). Fragment size was measured by capillary 
electrophoresis on an ABI 3033 (Applied Biosystems) 
and scored using GeneMapper® Software Version 4.0 
(Applied Biosystems) [39].

Ethical considerations
Ethical clearance for the TES was obtained from the 
medical research coordinating committee (MRCC) of the 
National Institute for Medical Research (NIMR), while 
permission to conduct the study at the health facilities 
was sought in writing from the relevant regional and 
district medical authorities. Ethical clearance from the 
CDC was not required because the analysis of samples 
which was done at the CDC Malaria Laboratory, 
using samples without linked identifiers (de-identified 
samples), were determined by the CDC Center of Global 

Health’s Human Research Protection Coordinator to not 
constitute an engagement in human subjects’ research. 
Informed consent (oral and written) was obtained from 
parents or guardians before patients were screened to 
assess their eligibility for possible inclusion in the study.

Data management and analysis
GeneScan chromatograms were analysed using 
GeneMapper® Software Version 4.0 (Applied Biosystems) 
with an internal size standard of 350 Rox. The stutter 
window was set to 2.5 for 2  bp repeats, 3.5 for 3  bp 
repeats and 4.5 for 4 bp repeats. The stutter ratio was set 
to 0.4 for the four markers, and for the remaining two 
markers (C2M34 and C3M69), a relatively higher stutter 
ratio (0.6) was set as they showed greater stuttering 
during manual inspection of the chromatograms. A 
cut-off of 1000 relative fluorescence units (RFUs) was 
used to distinguish true peaks from background signals 
for samples which produced more than one peak. All 
dominant peaks (i.e., those within the size range with the 
highest RFUs) and any additional alleles with a minimum 
height of 30% of the dominant allele were scored. All 
chromatograms were inspected manually to confirm 
call quality. Then, samples with low RFU density (10% of 
genotyped samples) were re-analysed with a minimum 
fluorescence of 200 RFU. Microsatellite haplotypes 
comprising more than 3 (50%) successfully typed markers 
were selected for further analysis.

For downstream population genetics analysis, multi-
locus microsatellite allele data were converted into 
different formats using CONVERT software version 
1.3.1. The number of genetically distinct parasite 
clones (multiplicity of infection, MOI) was calculated 
considering the maximum number of alleles detected at 
any of the six microsatellite loci. The number of clones 
for each population was determined by summing the 
total number of clones per isolate. The mean MOI for 
each population was calculated by dividing the total 
number of clones detected by the number of samples. 
Genetic diversity was measured by calculating allelic 
richness (Rs) and expected heterozygosity (He) using 
FSTAT software version 2.9.3.2 [40]. As a measure of 
inbreeding within populations (non-random association 
of alleles), the standardized index of association (IA

S) 
was used to measure multi-locus linkage disequilibrium 
(LD) in each parasite population using LIAN version 3.6, 
applying a Monte Carlo test with 100,000 re-sampling 
steps [41].

STRU CTU RE version 2.3.4 [42] was used to determine 
the number of population clusters (K) and whether 
the haplotypes clustered according to their geographic 
origin. The analysis was run 20 times for K = 1 to 20, 
and 100,000 Monte Carlo Markov Chain (MCMC) 
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iterations after a burn-in period of 100,000, and using 
the admixture model. To obtain the optimal K value, the 
method of Evanno et  al. [42] was used to calculate ΔK 
from the log probability of the data (LnP[D]) using STRU 
CTU RE HARVESTER [43]. The STRU CTU RE bar plots 
(ancestry coefficients) were visualized using the Cluster 
Markov Packager Across K (CLUMPAK) [44]. Genetic 
differentiation between populations was measured 
by calculating the FST statistic according to Nei [45]. 
Estimation of average heterozygosity and genetic distance 
from a small number of individuals was done using 
the pairwise.neifst function of the hierfstat R package 
[46]. The Mantel Test was performed to measure the 
associations between genetic distance and geographical 
distance between catchments using the mantel function 
of the R adegenet package [47]. To assess haplotype 
relatedness, the genetic distance metric (1 − pairwise 
allele sharing (PS)) was calculated and used to generate 
phylogenetic trees using the bionj Ape R package [48].

Results
Among a total of 94 Plasmodium falciparum samples, 83 
(88.3%) were successfully genotyped, and all gave positive 
results for 3 (50.0%) or more microsatellite markers 
(Table  1 and Additional file  1: Table  S1). Only single 
infections or dominant haplotypes constructed from 
multiple infection data were included in downstream 
population genetic analyses (Additional file 1: Table S1). 
The number of clones per sample ranged from 1 to 4 
(Additional file  2: Table  S2), and a total of 38 (45.8%) 
(Additional file 3: Table S3) samples had single infections 
(samples with one allele at all 6 microsatellite loci), 
followed by samples carrying two distinct parasite 
clones (n = 32, 38.5%), three (n = 9, 10.84%), and only 
four samples carried four distinct clones (Additional 
file  2: Table  S2). Overall, at least 38% of the samples in 
each population contained more than one parasite clone 
(polyclonal), and there was limited variability in the mean 

MOI among the populations (average MOI ranging from 
1.68 to 1.88) (Table 1).

No significant difference in the mean multiplicity 
of infection was found among the populations
In malaria-endemic countries like Tanzania, individuals 
often carry more than one parasitic clone that is 
genetically different, referred to as the multiplicity 
of infection (MOI), also known as the complexity of 
infection (COI). The MOI occurs either due to repeated 
bites of infective mosquitoes or multiple clones in a single 
mosquito inoculum [49] and decreases with declining 
transmission. Here, we found a mean MOI of 1.73 across 
populations (range = 1–4 parasite clones per sample), and 
there was no statistically significant difference among the 
four populations (Kruskal‒Wallis test) (Fig. 2).

The association between polyclonality (proportion of 
multiple infections) and parasite prevalence was assessed, 
and a positive correlation between polyclonality and 
malaria prevalence was observed (based on 2015 school 
survey data) per population (R = 0.97, p-value = 0.035, 
Spearman Rank Correlation) (Fig.  3). Polyclonality 
was lower in Kibaha and Muheza, which had a lower 
prevalence compared to Ujiji with higher polyclonality 
and prevalence of malaria.

High genetic diversity but significant multi‑locus linkage 
disequilibrium (LD)
Of the 83 multi-locus haplotypes from successfully 
genotyped Plasmodium falciparum isolates, 53 (63.8%) 
were complete genotypes, 51 (96.2%) were unique, 
and only two haplotypes were identical to each other 
within Kibaha population. Regardless of transmission 
intensity, there was high genetic diversity of Plasmodium 
falciparum, with limited variability among the four 
parasite populations based on allelic richness (mean 
RS = 7.27, range = 7.48–8.03, for an adjusted minimum 
sample size of 18 per site) and expected heterozygosity 

Table 1 Population genetic metrics of four Tanzanian Plasmodium falciparum populations

N: total number of samples; n: number of samples successfully genotyped; h: number of unique haplotypes;  Rs: Allelic richness;  He: expected heterozygosity;  IA
S: 

standard index of association as a measure of multi-locus linkage disequilibrium (LD); MOI: multiplicity of infection (mean number of clones per population); 
Polyclonality = proportion of samples containing more than one parasite clone

*p-value < 0.01, **p-value < 0.001
a Prevalence of malaria in the study districts in the 2015 school malaria parasitological survey [38]
b Polyclonality (%) refers to the proportion of infections with > 1 clones

Population Prevalence (%)a N n h Rs ± SD He ± SD IA
S MOI Polyclonality 

(%)b

Kibaha 13.8 25 21 19 8.03 ± 2.8 0.85 ± 0.12 0.1569** 1.76 47.6

Ujiji-Kigoma 35.6 23 22 22 7.48 ± 2.1 0.84 ± 0.10 0.1736** 1.88 59.09

Mkuzi-Muheza 22.6 25 22 22 7.79 ± 2.4 0.82 ± 0.14 0.1095** 1.68 54.5

Mlimba-Kilombero 30.2 21 18 18 7.56 ± 2.3 0.80 ± 0.20 0.0903* 1.72 55.5
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Fig. 2 Multiplicity of infection in four Tanzanian Plasmodium falciparum populations. The Box and Whisker plots were generated from the number 
of clones determined for each microsatellite marker per population using R software. Dots indicate a haplotype, boxes indicate the interquartile 
range, the thick line indicates the median and the whiskers show the 95% confidence intervals. The numbers above the box plot indicate pairwise 
comparative p-values between populations, revealing a lack of significant difference in the MOI among the four sites

Fig. 3 Association between parasite prevalence (by RDT) and the proportion of multiple infections (polyclonality) in four Tanzanian Plasmodium 
falciparum populations. The graph indicates a significant positive association between polyclonal infections and parasite prevalence across different 
geographic areas. Dots indicate population-level prevalence and proportion of polyclonal infections, the blue line indicates the Spearman Rank 
Correlation line, and the grey-shaded region represents the 95% confidence interval
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Fig. 4 Genetic diversity [expected heterozygosity (A) and allelic richness (B)] of Plasmodium falciparum at the four geographic sites in Tanzania. 
The Box and Whisker plots were generated from the diversity metrics for each microsatellite marker per population using R software. Boxes indicate 
the interquartile range, the thick line indicates the median and the whiskers show the 95% confidence intervals
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(mean He = 0.83, range = 0.80–0.85) (Table  1, Fig.  4). 
However, according to the Index of Association (IA

S) 
analysis, which is a measure of multi-locus LD (which 
emerges when genotypes are related), all the parasite 
populations from the four sites showed significant 
multi-locus LD (Table  1). This could be explained by 
the presence of some degree of inbreeding despite high 
transmission intensity in some areas.

Furthermore, the diversity of microsatellite markers 
was assessed, and there was high variability in the alleles 
present per marker (A = 3–13) (Fig.  5), with variable 
frequencies for the four different sites. The marker 
M2490 was the least diverse microsatellite, with only 
3.5 mean number of distinct alleles detected across the 
four populations, while Poly-α was the most diverse 
microsatellite marker (A = 13, He = 0.91), followed by 
C2M34 (A = 11, He = 0.89). These two highly polymorphic 
markers (poly-α and C2M34), together with C3M69 and 
TA1, can be used for the detection of parasite clones in 
Tanzania.

Lack of population structure and genetic differentiation
To investigate the presence of parasite population 
structure among the four Tanzanian sites, cluster 
analysis of the haplotypes was conducted using STRU 

CTU RE version 2.3.4. No evidence of any population 
structure was detected from K = 2–4, and the ancestry 
of the genotypes was equally split between the genetic 
populations, revealing no evidence of population 
structure (Fig. 6).

Further cluster analysis of the haplotypes using 
principal component analysis (PCA, performed with the 
princomp function in the R package) also revealed no 
signatures of population structure and no clustering of 
isolates according to geographic origin (Fig. 7).

Gene flow and population connectivity
To assess gene flow and population connectivity, pairwise 
genetic differences among the four parasite populations 
were calculated based on Jost’s D metric [50] and 
FST according to Nei [45] using the pairwise. neifst 
function available in the hierfstat R package. Very low 
levels of genetic differentiation were observed between 
populations, confirming that Plasmodium falciparum 
populations from these sites are highly panmictic 
(Table  2). Mantel test was also conducted to assess 
the correlation between pairwise genetic distance and 
pairwise geographic distance in km as an indication of 
gene flow and parasite connectivity. The differentiation of 
parasite populations was not significantly associated with 

Fig. 5 Diversity of Plasmodium falciparum microsatellite markers among parasites from the four sites in Tanzania. The Box and Whisker plots were 
generated from unique allele counts for each microsatellite marker using R software. Boxes indicate the interquartile range, the thick line indicates 
the median and the whiskers show the 95% confidence intervals
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geographical distance between populations and therefore 
did not fit the Isolation-by-Distance model (Mantel 
statistic r = 0.072, p-value = 0.59).

Haplotype relatedness
To assess relatedness in Plasmodium falciparum, pairwise 
comparisons among all the isolates were conducted using 
the dist.gene command in the R Ape package. The results 
showed that, on average, the majority of the isolates had 

Fig. 6 Bayesian cluster analysis of Plasmodium falciparum microsatellite haplotypes from the four sites of Tanzania. Structure bar plots representing 
individual ancestry coefficients are shown for K = 2, 3 and 4, and each vertical bar represents an individual genotype and the membership 
coefficient (Q) within each of the genetic populations, as defined by the different colours

Fig. 7 Plasmodium falciparum haplotype clustering. A Principal component analysis (PCA) of Plasmodium falciparum haplotypes. Dots indicate 
individual microsatellite haplotypes, and colours indicate the four sample collection sites. B The percentage of variance explained by each principal 
component (PC)

Table 2 Pairwise genetic differentiation among parasite 
populations in Tanzania

Top right = pairwise FST, left bottom = pairwise Jost’s D

Kibaha Ujiji‑Kigoma Mkuzi‑Muheza Mlimba

Kibaha 0.01 0.009 0.038

Ujiji-Kigoma 0.37 0.005 0.001

Mkuzi-Muheza 0.22 0.14 0.003

Mlimba 0.34 0.37 0.24
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only one identical allele among all six markers, and only 
a few isolates shared more than 50% of the alleles (three 
or more alleles). Phylogenetic analysis using neighbour-
joining tree also confirmed a lack of population structure 
and geographic clustering of the genotypes. However, 
more haplotypes were clustering together within than 
between populations (Fig. 8).

Discussion
This study included samples from four geographically 
distinct parasite populations (located 296 to 1211  km 
apart) from areas with different transmission intensities 
to assess polymorphisms and genetic diversity of 
Plasmodium falciparum’s six neutral microsatellite 
markers (Poly-α, PfPK2, TA1, C3M69, C2M34 and 
M2490) for potential use in TES in Tanzania. It also 
aimed to capture the spatial genetic diversity and 
population structure of Tanzanian Plasmodium 
falciparum. The findings showed that four markers 
(Poly-α, C2M34, C3M69 and TA1) had high diversity 
and could be adopted as validated markers for use in TES 
in Tanzania. As recently recommended by WHO [29] 
and a previous study that showed that a combination of 

four microsatellite markers with sufficient diversity is 
required in TES [51, 52], these microsatellite markers can 
be included in the revised workflow for TES in Tanzania. 
The new panel should replace the old protocol based on 
genotyping of msp1, msp2 and glurp for distinguishing 
recrudescent from new infections in ongoing TES in 
Tanzania. However, the areas around TES sites have 
increasingly reported a decline and heterogeneity of 
malaria transmission in the past two decades, suggesting 
that continuous assessment of these and possibly other 
microsatellite markers will be critical. This approach will 
ensure that high-resolution markers are used and that the 
efficacy of anti-malarials is not underestimated due to 
limited discrimination power of the markers. Additional 
methods such as targeted amplicon sequencing can also 
be explored based on the capacity of the laboratory, as 
recently recommended [53].

This study also showed high diversity, a lack of 
population structure and a high level of polyclonality 
despite the varying prevalence of malaria among the 
study sites. The results suggest that these areas still 
have high malaria transmission rates, but there is 
little evidence of impact of interventions deployed 

Fig. 8 Relatedness of Plasmodium falciparum haplotypes in Tanzania. Neighbour-Joining tree showing low levels of similarity of the multi-locus 
Plasmodium falciparum haplotypes between most isolates with similar haplotypes within populations. Tips of the NJ tree are colour-coded 
according to the four geographic sites, and black diamonds indicate bootstrap values > 50
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by NMCP on transmission dynamics. However, a 
significant correlation between parasite prevalence 
and polyclonality (as a proxy of malaria transmission 
intensity) was detected as expected, given that in 
areas with higher malaria prevalence, humans are 
exposed to multiple mosquito bites (superinfection) or 
infections with multiple clones (co-transmission) [54, 
55]. A strong correlation between parasite prevalence 
and polyclonality has been reported in other studies 
[56–58] and needs to be monitored as a surrogate 
measure of potential changes in malaria transmission 
due to the impacts of interventions. In Papua New 
Guinea  (PNG), the Plasmodium falciparum MOI was 
associated with parasite prevalence, but the diversity 
of the polymorphic marker sizes remained high despite 
wide variation in prevalence at different sites [56–58]. 
In contrast to these findings, a study in Indonesia [59] 
reported lower genetic diversity, which was consistent 
with the low level of malaria transmission at the study 
sites and could be a result of longer-term sustained low 
transmission in this area than in PNG and Tanzania.

Microsatellites are highly polymorphic and 
rapidly evolving; therefore, long-term sustained 
low transmission may be needed to detect signals 
of low diversity [30]. In PNG, studies have followed 
Plasmodium falciparum populations in terms of 
declining transmission for more than 9  years and 
reported very minor changes in microsatellite 
diversity [60]. Moreover, high transmission intensity, 
high polyclonality and, therefore, high rates of 
recombination between distinct clones (outcrossing) 
might obscure the expected association between 
the MOI and transmission intensity (prevalence) 
in different transmission zones. However, in low-
transmission areas such as South America, studies 
conducted in Ecuador and Peru have reported 
infections containing clonal parasites with clear 
population structures [61, 62].

In addition to the MOI as a proxy for transmission 
intensity, estimating the extent of parasite genetic 
diversity and population structure is essential 
for obtaining a deeper understanding of malaria 
epidemiology and transmission dynamics as well as 
evaluating the impact of malaria control interventions 
[63]. Polymorphic markers can also be used for the 
detection of different parasite clones in different studies 
including TES. In this study, it was shown that parasite 
genetic diversity was high at the four Tanzanian sites 
regardless of the prevalence of infection and that the 
respective parasite populations appeared to be highly 
mixed with no clear genetic structure according to 
geographic origin. Thus, the high polymorphism at all 
sites and with all markers suggests that these markers 

(especially the four topmost) can sufficiently be used in 
TES to distinguish recrudescent from new infections as 
recommended by the WHO [29].

Unlike the expectation that geographical isolation 
causes limited migration among subpopulations 
and geographical population structure, there was no 
significant genetic differentiation (measured by FST) 
between distant and nearby parasite populations. These 
results suggest high malaria transmission intensity 
and/or extensive parasite migration as well as mixing 
throughout the country despite significant improvements 
in malaria control strategies and drastic declines in 
malaria transmission and disease burden in recent years. 
These findings support previous observations where 
genetic diversity, geographic clustering and inbreeding 
with strong LD as population genetic signals are expected 
in low-transmission areas, whereas high proportions 
of polyclonal infections, high diversity and panmictic 
parasite populations are expected in areas with high 
levels of transmission [30]. Generally, the levels of allelic 
diversity, parasite outcrossing, and gene flow are high in 
African populations, low in South American populations, 
and intermediate in Southeast Asian populations 
[30]. The results of this study support the situation of 
continuing highly endemic transmission dynamics in 
the country despite the expected substantial impact of 
recent interventions on parasite prevalence in Tanzania. 
The observed differences between this and recent 
studies, which were conducted in Tanzania and showed 
population structure among parasites from different 
parts of the country [64, 65], could be due to the markers 
used; SNPs and WGS data compared to microsatellites 
used in the current study. Validation of microsatellite 
markers for surveillance is important because they 
have been the gold standard tool for determining the 
genetics of malaria parasite populations for many years. 
Furthermore, they are cheaper and easier to access for 
resource-limited laboratories. Ongoing and future studies 
will test different markers to increase the resolution and 
robustness of capturing different population genetics 
metrics that will be useful in assessing the impact of 
interventions and progress toward malaria elimination 
in Tanzania. Additionally, optimization of markers for 
molecular genotyping of samples collected in TES needs 
to be pursued as recently recommended [53].

In contrast to the above findings, there was significant 
multi-locus LD within populations, suggesting some 
level of inbreeding of related parasites and repeated 
haplotypes, indicating the occurrence of some clonal 
transmission (monoclonal infections transmitted by the 
mosquito vector in which parasite sexual recombination 
occurred between genetically identical clones, albeit 
within the limitations of the markers used). An additional 
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explanation for this finding could be due to the presence 
of subpopulations within populations (Wahlund effect) 
[66], as the samples for this study were obtained from 
clinical sites where patients usually come from different 
geographic areas to seek medical care. Other studies 
in different malaria-endemic countries found similar 
results, and significant LD despite the high genetic 
diversity and high proportion of polyclonal infections 
caused by Plasmodium falciparum [67, 68] and 
Plasmodium vivax [69, 70]. The detection of significant 
LD has important implications that could facilitate 
inbreeding and dispersal of multi-locus drug resistance 
haplotypes or other virulent strains. As transmission 
decreases in Tanzania due to intensive control activities, 
as shown elsewhere [60], the presence of LD combined 
with a lack of geographic population structure is highly 
likely to facilitate such events, and it could be a future 
challenge in achieving malaria elimination.

There was high diversity in each of the microsatellite 
markers, indicating that a few highly polymorphic 
markers (Poly-α and C2M34) can be used to track 
the MOI of Plasmodium falciparum in Tanzania. 
However, PfPK2 which was recommended by WHO 
together with Poly-α was less polymorphic and less 
informative suggesting that these markers need to be 
optimized to fit the local malarial epidemiology before 
they can be adopted for use in TES. In addition, the 
genotyped markers may have limited the resolution 
of the population structure. The microsatellite panel 
used had few markers (only six, with less than one per 
chromosome); many were highly polymorphic (many 
alleles), and they were prone to technical artefacts [71]. 
In addition, the sample size per population was relatively 
limited, with approximately 20 samples successfully 
genotyped per site. Therefore, subtle differences between 
populations may not be detected. For example, in Kibaha, 
the same haplotype was found in two samples, whilst 
in all the other populations, all the haplotypes were 
unique. If more samples had been genotyped, additional 
repeated haplotypes may have been found, and diversity 
measures altered somewhat. Further analysis of large 
numbers of samples (n > 50) from additional sites (again 
with varying transmission intensity) and utilizing larger 
numbers of highly polymorphic microsatellite markers 
[30, 72, 73] and/or comparing them with SNP barcodes 
[74], amplicons [75–78] and WGS [79] will be required 
to optimize these markers. This should also be part of the 
ongoing initiatives to establish a molecular surveillance 
platform to support policy and decision-making by the 
Tanzanian NMCP in their strategy to eliminate malaria by 
2030. Nevertheless, the data generated provide findings 
of useful markers for TES and parasite populations 
in Tanzania showing that there are potentially large, 

diverse and highly intermixing parasites despite strong 
reductions in infection prevalence and disease burden. 
The findings also provide useful baseline information for 
future monitoring of parasite populations in response to 
the ongoing malaria interventions.

Conclusion
Microsatellite genotyping revealed high polyclonality and 
genetic diversity but without any significant population 
structure. Poly-α, C2M34, C3M69 and TA1 were the 
topmost polymorphic markers and Poly-α alone or with 
any of the other three markers could be adopted for 
use in TES in Tanzania. Failure to reveal any significant 
population structure among parasite populations could 
be due to high transmission or inherent limitations 
of small numbers of microsatellite markers and 
sample size. More studies covering sites with varying 
transmission intensities, more samples and using other 
genotyping markers will be required for establishing an 
effective molecular surveillance system to support the 
implementation of TES and area-specific interventions in 
Tanzania and for monitoring the impacts of the current 
and future malaria interventions.
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